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Cholesteryl ester transfer protein (CETP), an enzyme which catalyses the transfer of
cholesteryl ester from HDL to VLDL, is a promising target for discovery of novel anti-
hyperlipidemic agents due to its pivotal role in HDL metabolism and reverse cholesterol
transport. Quantitative structure activity relationship study of a series of CETP inhibitors
was carried out using genetic function approximation to study various structural require-
ments for CETP inhibition. Various lipophilic, electronic, geometric and spatial descriptors
were correlated with CETP inhibitory activity. Developed models were found predictive as
indicated by their good r2

pred values and satisfactory internal and external cross-validation
results. Study reveals that lipophilicity (ClogP), with parabolic relationship, contributed sig-
nificantly to the activity along with some electronic, geometric and quantum mechanical
descriptors. The present study can be applied to future lead optimization of CETP inhibitors.
Keywords: QSAR; Genetic function approximation; Molecular descriptors; Predictive models,
Lack-of-fit; Medicinal chemistry; Drug design; Structure-activity relationships.

Atherosclerosis is the underlying condition of coronary artery disease
(CAD). Elevated blood cholesterol levels are one of the most common risk
factors of CAD apart from other risk factors1. Lipid lowering therapies in-
clude the blockbuster statins, cholesterol absorption inhibitor ezetimibe
and fibrates. The routine use of statins has been questioned due to their
varied chronic or acute toxicities2. Moreover, withdrawals of some block-
buster statin drugs also question their routine use in the management of
hyperlipidemia3. Plasma cholesteryl ester transfer protein (CETP) is a hydro-
phobic glycoprotein that is secreted mainly from the liver and that circu-
lates in plasma and is bound mainly to high density lipoprotein (HDL). It
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promotes the redistribution of cholesteryl esters, triglycerides and to a
lesser extent, phospholipids between plasma lipoproteins. CETP catalyses
transfer of cholesteryl ester from HDL to low density lipoprotein (LDL)/very
low density lipoprotein (VLDL) in exchange for triglyceride4,5. Although
various dyslipidemias have been linked with increased CETP concentra-
tions6–8, it is possible that elevated CETP is the result of dyslipidemia rather
than its cause9. By transferring cholesteryl esters from HDL to VLDL and
LDL, CETP reduces the concentration of antiatherogenic HDL cholesterol
while increasing the concentration of LDL cholesterol10. CETP inhibitors
are thus thought to increase the concentration of HDL-cholesterol levels
and thus are expected to aid in controlling dyslipidemia. Varieties of small
molecule CETP inhibitors are under experimental studies and few are in
clinical trials11. Recently, dalcetrapib (JTT-705) has been reported to be safe
and well-tolerable in a 48-week double-blind study12 in contrast with the
withdrawal of torcetrapib in the ILLUMINATE study13.

Quantitative structure activity relationship (QSAR) study is a very useful
tool in the era of modern drug discovery to get better insights into structure
activity relationships14–17. During the process, the behavior of QSAR models
developed is examined with a variety of statistical parameters and the con-
tribution of various descriptors is analyzed. Various methods have been de-
veloped for statistical analysis of generated QSAR models. Multiple Linear
Regression (MLR) and Partial Least Squares (PLS) are one of the most popu-
lar statistical methods. PLS regression technique is especially useful in the
cases where the number of descriptors (independent variables) is compara-
ble to or greater than the number of compounds (data points) and/or there
exist other factors leading to correlations between variables18. A compre-
hensive review of comparison of MLR, PLS and GA-MLR has been pub-
lished19. In this communication, we describe results of QSAR studies carried
out on a series of CETP inhibitors using genetic function approximation (GFA)
technique20.

GFA algorithm offers a new approach to build structure-activity models.
It automates the search for QSAR models by combining a genetic algorithm
with statistical modeling tools. Thousands of candidate models are created
and tested during evolution; only the superior models survive, and are then
used as “parents” for the creation of the next generation of candidate mod-
els. GFA has been successfully applied for the generation of variety of QSAR
models21–23. Such model provides structure-activity insights, which can be
used for designing of new compounds and activity prediction prior to syn-
thesis.
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EXPERIMENTAL

Data Set

In present studies, a series of substituted 1,2,4-triazole derivatives, reported by Sikorski et al.24

as potential CETP inhibitors, was selected. Thirty seven compounds were randomly divided
into training and test sets, the former set consisting of 28 compounds and the remaining
9 compounds were taken in the test set. Structures of all the compounds used for QSAR
analysis and their CETP enzyme inhibition activity (IC50, micromolar concentrations, µM)
are given in Table I. For every compound of the series, the experimental values of biological
activity (pIC50) are used in the negative logarithmic scale. The structures of all compounds
used in this study were sketched by using Visualizer module of Discovery studio 2.1 software
(Accelrys Inc., USA)25. CHARMM force field was used for the calculation of potential energy.
An energy minimization of all the compounds was done by using Smart Minimizer method
until the root mean square gradient value becomes smaller than 0.001 kcal/mol Å. Further,
optimized structures for all compounds were aligned with compound 1 and these structures
were used for calculation of various descriptors.

Descriptor Calculation

Various two-dimensional (structural, thermodynamic and quantum mechanical) and three-
dimensional (steric, electronic and geometric) physicochemical descriptors were calculated
using calculate molecular properties protocol of the Discovery Studio 2.1. Theoretical ClogP
calculations were carried out using WINDOWS based ClogP software program (version 4.0,
BioByte Corp, Claremont, CA). A correlation matrix of the molecular descriptors was pre-
pared and highly correlated descriptors with a correlation value of 0.9 or above were re-
moved from the study. Remaining descriptors were used to develop QSAR models.
Descriptors included to develop QSAR models are listed and described in Table II.

Regression Analysis

The data set was modeled using the genetic function approximation (GFA) technique to
generate a population of equations rather than one single equation for correlation between
biological activity and descriptors. GFA is genetics based method of variable selection, which
combines Holland’s genetic algorithm with Friedman’s multivariate adaptive regression
splines to evolve the population of equations that best fit the training set data.

The GFA method works in the following way: A particular number of equations (set at
100 by default in the Discovery studio 2.1 software) are generated randomly. Then pairs of
“parent” equations are chosen randomly from this set of 100 equations and “crossover” op-
erations were performed at random. The number of crossing over was set by default at 5000.
The goodness of each progeny equation is assessed by Friedman’s lack of fit (LOF) score,
which is given by following formula

LOF = LSE/[1 – (c + dp)/m]2

where LSE is the least-squares error, c is the number of basis functions in the model, d is
smoothing parameter, p is the number of descriptors and m is the number of observations
in the training set. The smoothing parameter, which controls the scoring bias between equa-
tions of different sizes, was set at default value of 0.5 and GFA crossover of 5000 were set to
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TABLE I
Chemical structures and biological activity of training set (1–28) and test set (29–37) com-
pounds

Compound R1 R2 R3 IC50, µM

1 n-C13H27– 3-CH3O-C6H4– –SH 2

2 n-C13H27– 2-CH3-C6H4– –SH 4

3 n-C13H27– 2-CH3O-C6H4– –SH 7

4 n-C13H27– 3-CH3-C6H4– –SH 7

5 n-C13H27– cyclohexyl– –SH 7

6 n-C13H27– 4-F-C6H4– –SH 8

7 n-C13H27– 4-C6H5O-C6H4– –SH 8

8 n-C6H13CC(CH2)5– 3-CH3O-C6H4– –SH 8

9 n-C13H27– 3-F-C6H4– –SH 9

10 n-C13H27– 3,4-(OCH2O)C6H3– –SH 10

11 n-C13H27– 4-CH3-C6H4– –SH 10

12 n-C13H27– 3-CF3-C6H4– –SH 10

13 n-C13H27– 4-Cl-2-CH3-C6H3– –SH 10

14 n-C13H27– 2-CH3S-C6H4– –SH 10

15 n-C13H27– 4-C6H5CH2O-C6H4– –SH 15

16 n-C13H27– 2-naphthyl– –SH 30

17 CH3(CH2)6S(CH2)5– 3-CH3O-C6H4– –SH 15

18 HCC(CH2)11– 3-CH3O-C6H4– –SH 15

19 n-C13H27– 4-CH3-3-Cl-C6H3– –SH 20

20 CH3(CH2)10OCH2– 3-CH3O-C6H4– –SH 20

21 4-(n-C10H21benzyl)– 3-CH3O-C6H4– –SH 4.5

22 4-(n-C9H19benzyl)– 3-CH3O-C6H4– –SH 6

23 4-(n-C7H15benzyl)– 3-CH3O-C6H4– –SH 6

24 4-(n-C8H17)C6H4OCH2– 3-CH3O-C6H4– –SH 15

25 4-(n-C7H15)C6H4OCH2– 3-CH3O-C6H4– –SH 20

26 4-(n-C8H17)C6H4(CH2)3– 3-CH3O-C6H4– –SH 4

27 4-(n-C7H15)C6H4(CH2)3– 3-CH3O-C6H4– –SH 7.5

28 4-(n-C6H13)C6H4(CH2)3– 3-CH3O-C6H4– –SH 20

29 n-C13H27– 3-Cl-C6H4– –SH 5

30 n-C13H27– 2-Cl-C6H4– –SH 10

31 n-C13H27– 4-Cl-C6H4– –SH 15

32 n-C13H27– 4-CF3-C6H4– –SH 20

33 n-C13H27– C6H5– –SH 30

34 n-C13H27– 3-C6H5CH2O-C6H4– –SH 40

35 CH3(CH2)10SCH2– 3-CH3O-C6H4– –SH 40

36 n-C13H27– 2-CH3CH2O-C6H4– –SH 50

37 4-(n-C6H13)C6H4OCH2– 3-CH3O-C6H4– –SH 25

N

N

N

R1

R2

R3



give reasonable convergence. The length of equation was fixed to seven terms, the popula-
tion size was established as 100, the equation term was set to linear polynomial functional-
ity and the mutation probability was specified as 0.1. The best equations, out of the 100
equations, were chosen based on the statistical parameters such as regression coefficient (r),
adjusted regression coefficient (radj), regression coefficient cross validation (rcv) and F-test
values.

Validation Test

To check the intercorrelation of descriptors, variance inflation factor (VIF) analysis was per-
formed. VIF value is calculated from 1/(1 – r2), where r2 is the multiple correlation coeffi-
cient of one descriptor’s effect regressed on the remaining molecular descriptors. VIF value
larger than 10 signals towards chance-correlation and hide the information of descriptors by
intercorrelation of descriptors26.

It has been shown that optimal statistical characteristics (high values of r and F, low val-
ues of s and LOF) need not be the proof of a highly predictive model27. Hence, in order to
evaluate the predictive ability of the QSAR model, we used the method described by Roy et
al.27. External predictability of the model was determined by calculating the value of predic-
tive r2 (r2

pred) using the following equation

r2
pred = 1 –

( )

( )

Y Y

Y Y
Pred(test) Obs(test)

Obs(test) training

−

−
∑
∑

2

2

RESULTS AND DISCUSSION

In the present study, we have screened 16 preselected descriptors for 28 CETP
inhibitors using GFA method. The choice of descriptors was based on the
type of interaction between the inhibitors and the enzyme (principally in-
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TABLE II
List of descriptors used in the study

No. Descriptor Definition

1 CLogP Log of the octanol–water partition coefficient

2 Total_Energy Total energy by VAMP AM1 calculation

3 Dipole_mag Magnitude of dipole moment

4 Jurs_RNCG Charge of most negative atom divided by the total negative charge

5 Jurs_RPCS Solvent-accessible surface area of the most positive atom divided
by relative positive charge

6 Jurs_WNSA_3 Surface weighted atomic partial negative surface area

7 Chi_V_1 Valence first order connectivity index



volving hydrophobic, electronic and steric interactions). The present series
was selected for the structure-activity relationship study due to its remark-
able structural similarity with dalcetrapib (JTT-705). Moreover, the most po-
tent compound showed IC50 value of 2 µM against the reference standard of
6 µM for JTT-705 28. Thus, the present study would definitely be of great
value for a plausible optimization of lead using QSAR approach to find
more potent analogs. Initially, 100 QSAR equations were generated that
consist of six descriptors among QSAR random models. However, finally
the results of the best five models are given in Table III along with their re-
gression statistics.

For a statistically significant model, it is necessary that the descriptors
evolved in the equation should not be inter-correlated with each other. The
intercorrelation of the descriptors used in the selected models (Table IV)
was very low. The correlation matrix for the used descriptors is shown in
Table IV. To further check the intercorrelation of descriptors, variance infla-
tion factor (VIF) analysis was performed. The VIF values of these descriptors
were found to be 7.588 (ClogP), 9.185 (Total_Energy), 1.895 (Dipol_mag),

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 7, pp. 803–813

808 Chhabria, Suhagia, Mandhare, Brahmkshatriya:

TABLE III
Selected QSAR equations and their regression statistics

Eq. Description r2 r2
adj r2

cv r2
pred LOF F

(1) pIC50 = –2.45069 + 2.07188 * ClogP – 0.662325 *
Jurs_RPCS + 0.00042879 * Total_Energy_VAMP –
0.11094 * (ClogP)2 – 0.0174428 * Dipole_mag2 +
20.0114 * (Jurs_RNCG)2

0.655 0.566 0.548 0.707 0.125 6.646

(2) pIC50 = –2.69336 + 2.05384 * ClogP + 6.31237 *
Jurs_RNCG – 0.723074 * Jurs_RPCS +
0.000451291 * Total_Energy_VAMP – 0.109915 *
(ClogP)2 – 0.0182247 * (Dipole_mag)2

0.653 0.554 0.546 0.720 0.126 6.588

(3) pIC50 = –4.13841 + 2.50117 * ClogP + 7.03533 *
Jurs_RNCG – 0.729423 * Jurs_RPCS – 0.0411908 *
Jurs_WNSA_3 + 0.000778378 *
Total_Energy_VAMP – 0.13285 * (ClogP)2

0.651 0.550 0.543 0.712 0.127 6.512

(4) pIC50 = –2.16309 + 1.9469 * ClogP – 0.0750192 *
Dipole_mag + 5.9353 * Jurs_RNCG – 0.709883 *
Jurs_RPCS + 0.000440991 * Total_Energy_VAMP
– 0.103836 * (ClogP)2

0.650 0.550 0.541 0.697 0.127 6.498

(5) pIC50 = –2.2679 – 0.0977765 * CHI_V_1 +
2.10787 * ClogP – 0.599758 * Jurs_RPCS +
0.000331998 * Total_Energy_VAMP – 0.110668 *
(ClogP)2 + 21.9536 * (Jurs_RNCG)2

0.634 0.542 0.523 0.737 0.133 6.053



4.019 (Jurs_RNCG), 2.259 (Jurs_RPCS), 9.624 (Jurs_WNSA_3) and 2.962
(Chi_V_1). All the VIF values were found to be less than 10. Thus, from the
VIF analysis, it is clear that the descriptors used in the final models have
low intercorrelation.

The models were also evaluated for their capacity to predict the activity
of training set and test set compounds, i.e., internal and external cross-
validation, respectively. The results for the Eq. (1) are summarized in Tables
V and VI. The models displayed satisfactory values of predicted r2 (r2

pred).
For all the models, r2

pred was found to be in the accepted range27.
As expected, lipophilicity of compounds emerged as an indispensable

descriptor for CETP inhibition along with other structural, spatial and elec-
tronic descriptors. Positive contribution of lipophilic parameter (ClogP) in
the equations is consistent with the fact that for inhibition of CETP, a
lipophilic compound is required to compete with cholesteryl esters, which
are highly lipophilic natural substrates for the enzyme. Also, compounds
with very high ClogP values, such as compound 15, 16 and 19 showed less
activity as evidenced from the parabolic relationship observed in the QSAR
equations. Looking at the parabolic correlation of ClogP with the activity, a
ClogP value of 7.00 was found to be optimum to show good bioavailability.

Jurs descriptors are a group of molecular descriptors which combine
shape and electronic information to characterize molecules29. These
descriptors are calculated by mapping atomic partial charges on sol-
vent-accessible surface areas of individual atoms. Jurs_RPCS is positive
charge surface area, i.e., solvent-accessible surface area of the most positive
atom divided by relative positive charge. Jurs_WNSA_3 is surface weighted
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TABLE IV
Correlation matrix of the descriptors used in the equations

pIC50 ClogP
Total_
Energy

Dipole_
mag

Jurs_
RNCG

Jurs_
RPCS

Jurs_
WNSA_3

Chi_V_1

pIC50 1

ClogP 0.198 1

Total_Energy 0.138 –0.219 1

Dipole_mag –0.256 0.246 0.129 1

Jurs_RNCG 0.101 –0.628 –0.155 –0.328 1

Jurs_RPCS 0.015 –0.087 0.566 –0.074 0.214 1

Jurs_WNSA_3 0.244 0.254 0.795 0.439 –0.358 0.440 1

Chi_V_1 0.018 0.648 –0.486 0.230 –0.097 –0.155 –0.075 1
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TABLE V
Observed and predicted pIC50 values for training set compounds (as per Eq. (1))

Compound pIC50 (observed) pIC50 (predicted) Residual

1 5.699 5.489 0.210

2 5.398 5.214 0.184

3 5.155 5.202 –0.047

4 5.155 5.013 0.142

5 5.155 5.327 –0.172

6 5.097 4.990 0.107

7 5.097 4.881 0.216

8 5.097 4.993 0.104

9 5.046 4.958 0.088

10 5.000 4.977 0.023

11 5.000 5.011 –0.011

12 5.000 4.979 0.021

13 5.000 5.098 –0.098

14 5.000 4.994 0.006

15 4.824 4.983 –0.159

16 4.824 4.918 –0.094

17 4.824 4.840 –0.016

18 4.824 4.934 –0.010

19 4.699 4.942 –0.243

20 4.699 4.636 0.063

21 5.347 5.285 0.062

22 5.222 5.294 –0.072

23 5.222 5.121 0.101

24 4.824 4.780 0.044

25 4.699 4.669 0.030

26 5.398 5.255 0.143

27 5.125 5.227 –0.102

28 4.699 5.120 –0.421



charged partial surface area. Jurs_RPCS and Jurs_WNSA_3 showed a nega-
tive contribution towards the biological activity. This means that the
charge distribution within the molecules acts as the driving force for
intermolecular interactions and the lesser the relative charge the larger the
interactions. The above fact is exemplified from compounds 16 and 19
(R2 = 2-naphthyl and 4-CH3-2-Cl-C6H3, respectively), where higher values
of Jurs_RPCS and Jurs_WNSA_3 resulted in decrease in activity. Notably,
most of the molecules which had a smaller R2 (3-OCH3-C6H4) stood out as
potent molecules due to low values of Jurs_RPCS and Jurs_WNSA_3 proving
importance of bulkiness at R2. Jurs_RNCG is relative negative charge, i.e.,
charge of most negative atom divided by the total negative charge. An in-
crease in the value of Jurs_RNCG resulted in increase in the CETP inhibi-
tory activity. Thus, compounds with a lower value of total negative charge
are more likely to be active. Compound 19, with 4-CH3-2-Cl group, had a
higher value of total negative charge (lower Jurs_RNCG) and hence possibly
is less active. Moreover, the coefficient for Jurs_RNCG descriptor was found
to be the highest among all descriptors’ coefficient values. This indicates
that Jurs_RNCG is the most significant descriptor that shows correlation to
CETP inhibitory activity followed by ClogP, which also showed a signifi-
cantly high correlation coefficient. Another important observation was
drawn from the effect of Chi_V_1 descriptor on biological activity.
Chi_V_1, valence first order connectivity index, is a topological descriptor,
which also showed negative contribution towards biological activity which
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TABLE VI
Observed and predicted pIC50 values for test set compounds (as per Eq. (1))

Compound pIC50 (observed) pIC50 (predicted) Residual

29 5.301 4.996 0.305

30 5.000 5.002 –0.002

31 4.824 5.017 –0.193

32 4.699 5.009 –0.310

33 4.523 4.808 –0.285

34 4.398 4.537 –0.139

35 4.398 4.807 –0.409

36 4.301 4.556 –0.255

37 4.602 4.390 0.212



indicates that molecules with bulkier substituents are less likely to show ac-
tivity. On the other hand, total energy of the molecules, with a low value of
correlation coefficient, contributed positively to the biological activity.
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